
Inverse Reinforcement Learning with Model
Predictive Control

Jinxin Zhao
Baidu Research Institute

Sunnyvale, CA
jinxinzhao@baidu.com

Liangjun Zhang
Baidu Research Institute

Sunnyvale, CA
liangjunzhang@baidu.com

Abstract

Model-free learning based methods for planning and control application have been
proven promising by many existing results. However, such kind of planning and
control algorithms are rarely used in practical systems, due to the unpredictable
outputs. On the other hand, model-based methods are largely deployed in real-life
systems, with guarantee of operational safety but complaint of lacking close-to-
human behavior. In this article we make an effort to leverage the benefits of
model-based optimization method and model-free learning method by introducing
a novel scheme of inverse reinforcement learning. We then present a framework
for combining human behavior model with model predictive control. The idea
is to take advantage of the feature identification capability of neural network
to determine the reward function of model predictive control. Furthermore, the
proposed approach is implemented to solve the practical autonomous driving
longitudinal control problem. In such problem, safe execution and passenger
comfort are simultaneously preferred.

1 Introduction

Selecting the most fruitful option by foreseeing the future, describes the nature of model predictive
control (MPC). At each time instant, MPC aims to find the control input by solving an optimization
problem. This optimization considers the costs/rewards of the future steps and the prediction is
achieved by exploiting a state-space model [Mayne et al., 2000]. MPC has drawn enormous attention
from both industrial and research perspectives. Industrial applications of MPC started from the field
of chemical process control. In decades, many companies like Shell, Honeywell have been developing
MPC packages for industrial uses [Qin and Badgwell, 2003]. Nowadays successful implementations
of MPC, in addition, lie in the area of power electronics with various topics including active front
end (AFE), power converters connected to resistor-inductor (RL) loads [Vazquez et al., 2014]. Apart
from industrial applications, MPC has also been an on-going topic in large amount of research
projects. A real-time MPC scheme is described in [Erez et al., 2013] for the control of humanoid
robots, where MPC generates the trajectories for full body dynamics based on the received sub-
tasks. Aerial and ground mobile robotic researchers also implement MPC algorithms to resist the
dynamic environment and confront the system constrains [Shim et al., 2003, Künhe et al., 2005].
Moreover, with the surge of self-driving vehicle development in present-day, MPC is showing even
more significance in such fields. [Schmied et al., 2015, Borrelli et al., 2006] describe longitudinal
control approaches for adaptive cruise control and vehicle tractor control to improve the vehicle
emission and fuel-consumption efficiency. Meanwhile active steering lateral vehicle controls focus
on collision avoidance, which is made possible by MPC implementation with reasonable dynamic
model for prediction [Borrelli et al., 2005, Falcone et al., 2008, Frasch et al., 2013].

Machine Learning for Autonomous Driving Workshop at the 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019), Vancouver, Canada.

Despite all the advantages and successful applications of MPC, it still suffers certain drawbacks like
difficulty of choosing parameters and lack of adaptivity. During the implementation phase of MPC,
selection of the parameters such as prediction horizon and optimization gains require lots of trial and
error in either simulation or hardware in the loop (HIL) test. In addition, previously fine-tuned MPC
controller in most cases does not adapt to the changes of the system. For example, variation of the
plant (under-controlled) system parameters results in the state prediction model failing to provide
meaningful prediction. Also, the change of the reference trajectory pattern, which may cause the
predefined cost function not able to conclude a satisfactory tracking performance anymore. Moreover,
in the field of autonomous driving, another issue of model-based algorithm like MPC is that the
generated behaviors do not always align with the expectation of a human, resulting into certain level
of discomfort. The root cause is that the cost/reward functions are predefined and lack of variation.

2 Related Work

One option to overcome such issues is to exploit finite state machine (FSM) with MPC to update
the prediction model or cost function parameters as explained in [Rodriguez et al., 2012, Arahal
et al., 2009]. However, such simple approach of combining several sets of parameters, does not avoid
tremendous amount of labor of parameters tuning and still requires delicately manual design of states
and transitions. On the other hand, deep learning techniques have shown enormous potential in the
fields such as object detection, prediction and classification [LeCun et al., 2015, Schmidhuber, 2015].
An active research topic of utilizing capability of deep learning techniques for building self-driving
vehicles is end-to-end driving as discussed in [Pomerleau, 1989, Xu et al., 2017], while such methods
suffer oscillating control input signals and are not friendly for real-life implementations.

On the other hand, utilizing the identification capacity of data driven method to complete the model-
based optimization algorithm provides another viable perspective. Similar idea was investigated
within the topic of inverse reinforcement learning (IRL) [Abbeel and Ng, 2004, Ng et al., 2000],
which aims to recover the cost function by observing a desired system trajectory or policy. Whereas
most problems formulated in the contexts of IRL are finite-state Markov decision process (MDP)
[Zhifei and Joo, 2012] with Bayesian probability state transition model, MPC algorithm in most case
deals with continuous state space systems. An interesting result is presented in [Silver et al., 2010],
where the behavior model, that translates state features (observation) to cost functions, was learnt
from demonstration.

In this article, we propose a framework for combining neural network (NN) model with MPC
algorithm, where the NN is pre-trained to recover the cost function for MPC, with respect to the
observation of the environment. One major challenge of such method is the under-determination,
where the observation does not provide enough bijective mapping from observation to label. Another
major challenge is that a behavior model with zero parameters also satisfies the optimality condition
with observation data, but this case has to be avoided in order to provide meaningful cost/reward
function. Autonomous vehicle longitudinal control problem could largely benefit from the propose
framework by learning the human-intended behavior. We thus provide a demonstration of solving
such problem with the proposed method.

3 Inverse Reinforcement Learning of MPC

3.1 Problem Formulation

Here we formulate the problem of inverse reinforcement learning for a system with MPC framework.
Model predictive control generates the control input for the plant (under-controlled) system by solving
an optimization problem. This process is repeated at each time instance and the first element of the
obtained control sequence is provided to the system. Compared with the classic feedback control law,
the main advantages of MPC is bi-fold. One is that the MPC control input is searched from more
general space instead of just the linear combination of the state errors in classical control, another
one the is that the future system states and references are also considered rather that only considering
the current state and the current reference signal.

2

A MPC algorithm is commonly formulated as follows, providing the current state is xk and prediction
horizon is N ,

minimizeuk:k+N−1

k+N−1∑
i=k

Cθ(xi, ui) + F (xk+N)

subject to xi+1 = f(xi, ui)

u ≤ ui ≤ ū

(1)

where xi ∈ Rn, ui ∈ Rm; Cθ is a cost function and θ represents the function parameters; F
represents a final cost function.

In this article, we propose a novel framework of making use of neural network to predict the
appropriate cost function for the MPC algorithm, i.e.,

Cθ = gψ(yk), (2)
where yk is the observed information at step k.

As mentioned above, the benefit of such architect is that the neural network model is capable of
provide suitable and various cost functions according to the observation of the environment. However,
it also introduces the difficulty for the training process. The objective is to train this neural network
model with favorable recorded trajectories, so that the entire algorithm is capable of generating
desired behavior while guaranteeing optimality in later use. The problem is formulated as follows.

Problem 1 Given the MPC algorithm described in (1) and the neural network structure in (2),
design the training process with pre-recorded desired trajectories. So that the cost function can
be reconstructed and the output of the algorithm shares similar behavior with compared with the
recorded trajectory .

3.2 Approach

In a normal imitation learning problem, the recorded data can explicitly provide the corresponding
relation between the input/observation and output/label of a model. However, this is not the case
for Problem 1, since the direct outputs of the MPC cost function Cθ can not be explicitly known or
recorded.

We provide the solution to Problem 1 here by presenting how to enable model training process
through recorded trajectory data. The idea is to exploit the Karush–Kuhn–Tucker (KKT) condition,
so that the a bijective mapping between observations and labels can be constructed.

Consider the MPC system configuration in (1), we further restrict the cost function to have a quadratic
form and omit the final state cost function F (·),

Cθ(xi, ui) =
1

2
(xTi Qkxi + uTi Rkui); (3)

following this format, the output of the neural network should be the matrices Qi and Ri, that is
θ = (Qk, Rk) = gψ(yk), (4)

where ψ represents the parameters of the neural network gψ(·). Along the dimension of time, the
under-controlled system physically locates at step k, and the cost function parameters (Qk, Rk)
remain constant for the prediction steps i in equation (1). After the control input is generated and
applied to the actual system and the actual system proceeds to step k+ 1, the cost function parameters
will then re-adjust and the optimization problem will be solved again for step k + 1.

Now, the original Problem 1 has been further concretized that we need to introduce a mechanism of
using neural network to predict the parameters (Qk, Rk) of cost function based on the observation
sequence yk. Given the observed samples of data sequence, our goal is to train a neural network such
that it varies the MPC cost function parameters according to the observation to imitate the behavior
encoded inside the data. Here we assume the hard constraint is always not active, which means
the inequality constraint has always been satisfied before applying it. Consider the optimization
described in (1) with cost function defined in (3), the Lagrangian is written as

L(X,U, λ) =
1

2

k+N−1∑
i=k

(xTi Qkxi + uTi Rkui) + λT (k)F(X,U) (5)

3

where the variables are defined as follows,

X = col(xk, xk+1, ..., xk+N−1) U = col(uk, uk+1, ..., uk+N−1)

λ(k) = col(λ0(k), λ1(k), ..., λN−1(k)), and λi(k) ∈ Rn

F(X,U) = col(f(xk, uk)− xk+1, ..., f(xk+N−1, uk+N−1)− xk+N).

The necessary and sufficient conditions for optimality of solution to the problem (1) is the KKT-
conditions [Boyd and Vandenberghe, 2004] as follows,

∂L

∂X
= QX +

∂FT (X,U)

∂X
λ(k) = 0,

∂L

∂U
= RU +

∂FT (X,U)

∂U
λ(k) = 0, (6)

where

Q = diag(Qk, Qk, ..., Qk), R = diag(Rk, Rk, ..., Rk).

Upon solving the MPC optimization problem at each time instant, a sequence of control inputs are
generated, whereas only the first one is actually fed to and executed by the system. Hence in the
recorded trajectory, each control input data point only represents the first element of the solution to
the optimization problem (1) at each time step.

Suppose X̃ = col(x̃0, x̃1, ..., x̃l) is the recorded sequence of the system trajectories and Ũ =
col(ũ0, ũ1, ..., ũl) is the recorded sequence of the recorded system control inputs. Assuming those
recorded trajectories are generated through a MPC solver, then each data pair needs to satisfy the
following condition

Qkx̃k +
∂fT (x, u)

∂x
|x=x̃k,u=ũk

λ0(k) = 0 Rkũk +
∂fT (x, u)

∂u
|x=x̃k,u=ũk

λ0(k) = 0. (7)

At this point, we can see the first challenge of solving problem 1. Even given known system dynamics
f(x, u), one data pair (x̃k, ũk) is not enough to recover the matrices of Qk and Rk.

We further restrict the form of the matrices Qk and Rk to be diagonal, which means

Qk = diag(qk), Rk = diag(rk),

where col(q, r) should be generated by the prediction neural network model. The diagonal form of
these matrices is commonly used in MPC applications. Thus the neural network model is represented
as follows,

col(qk, rk) = gψ(ỹk).

3.3 Model Training

Given a sequence of data pairs ((ỹ1, x̃1, ũ1), (ỹ2, x̃2, ũ2), ..., (ỹl, x̃l, ũl)), towards satisfying the
optimality condition described in (3.2), the loss function L is chosen as

L =

l∑
k=0

J(λ0(k)∗), λ0(k)∗ = argminJ(λ0(k)), J(λ0(k)) = ‖Gλ0(k) +Hcol(qk, rk)‖, (8)

where the matrices G and H are defined as

G =

[
∂fT

∂x |x=x̃k,u=ũk

∂fT

∂u |x=x̃k,u=ũk

]
H = diag(x̃k, ũk).

In this case, matrix G can be obtained from the system dynamics and matrix H can be constructed
from the recorded trajectory data.

Here it can be seen another challenge of solving the proposed problem, which is

λ0(k)∗ = 0, col(qk, rk) = 0

4

is an optimal solution to the minimization problem (8).

To avoid the optimal solution being trapped at zero, we introduce the following procedure for updating
the parameters ψ of the neural network gψ(·). The loss function in (8) is re-written as

J(λ0(k)) = ‖Uv‖, U = [G H] , v = col(λ0(k), qk, rk). (9)

The row dimension of U is n + m and the column dimension of U is 2n + m, where n is the
dimension of system state space and m is the dimension of the system input space. From (9), it can
be seen that as long as v lies inside the null space of U , J is minimized. Now let the columns of a
matrix W span the null space of U , i.e.,

Null(U) = span(w1, w2, ...)

where w1, w2,... are columns of matrix W . Hence, for any vector η, let

v = Wη.

Then v is an optimal solution to the problem (8).

In this article, we exploit the idea of expectation-maximization(EM) algorithm for the training process.
First of all, η is initialized with η = η0. Then, given the known system dynamics and data pair, matrix
W is calculated. Following that the guess value of the neural network output can be computed as
õ = Wη. Finally, the loss of the neural network is defined as

L =
∑
‖õ− o‖, o = gψ(yk).

And the loss is back-propagated to update the parameters of the neural network. Meanwhile, η is
updated by solving the least squares problem

minimizeη‖Wη − o‖.
These steps are then iterated until the neural network parameters converge. Summary of the algorithm
is illustrated in algorithm 1.

4 Autonomous Vehicle Longitudinal Control

Algorithm 1: Inverse Reinforcement Learning
MPC
Input: X̃, Ũ and Ỹ
Output: gψ(·)

1 η = η0, L = L0 and L̄;
2 while L > L̄ do
3 forward propagation o = gψ(Ỹ);
4 construct matrix U ;
5 compute the null space matrix W ;
6 update η as η = argminη‖Wη − o‖ calculate

the loss L =
∑
‖Wη − o‖ ;

7 back propagation to update network
parameters gψ(·) ;

8 end

In this section, the proposed approach is applied
for the design of a longitudinal controller for
autonomous vehicle. First a data-set generated
through simulation is used for training and then
a publicly available data-set is exploited for per-
formance comparison.

4.1 Algorithm formulation

Model-based optimization method such as
linear-quadratic-regulator (LQR) and MPC are
largely developed and deployed for autonomous
longitudinal vehicle control. However, substan-
tial amount of complaints are reported because
of the inconsistency between the algorithm gen-
erated behavior and human-expected behavior.
One interesting example is how to approach a
static vehicle stopping ahead of the plant (under-
controlled) vehicle. Human driver may speed
down far away and approach to the static vehicle
at a lower speed; on the contrary, optimization

based method usually commands the plant (under-controlled) vehicle to approach the static vehicle
rather fast followed by a late braking to stop behind the static vehicle. The reason is that the cost
function penalizes on the arrival time so that the vehicle travels as fast as possible to reduce the cost.
Adjusting the cost function could be an option to improve the passenger experience, but manual
parameters-tuning takes lots of effort and the same cost function may not necessarily improve the
driving performance for every driving scenario.

5

The proposed scheme in this article on the other hands aims to alleviate such drawback by imitating
the behavior of human through a recorded data set in the training phase and reconstruct the cost
function based on the observation later in the deployment phase.

For such longitudinal control problem, we define the under-controlled autonomous vehicle as “ego
vehicle” and call the vehicle in front as “leading vehicle”. Furthermore, the states of the system and
the system update function can be described as

xi =

[
dl − dd
vl − ve
vd − ve

]
, xi+1 = Axi +Bui, A =

[
1 dt 0
0 1 0
0 0 1

]
, B =

[
0
−dt
−dt

]
;

where dt is the time step or sampling time of the system and the physical meanings of the variables
are defined as vl ∈ R represents the velocity of the leading vehicle; ve ∈ R represents the velocity
of the ego vehicle; dl ∈ R represents the distance between ego vehicle and leading vehicle; dd ∈ R
represents a desired distance value between ego vehicle and leading vehicle; vd ∈ R represents a
desired speed of ego vehicle; ui ∈ R represents the acceleration of the ego vehicle, which is also the
control command generated by the algorithm.

Figure 1: Neural Network Layout

As for the prediction model gψ(yk), in this example, we
choose the observation yk as the trajectory history of the
previous 10 frames, i.e.,

yk = col(xk, xk−1, ..., xk−9).

We take use of a four-layer fully connected neural net-
work model wit number of nodes shown in Figure 1. The
activation functions are chosen as Tanh(·) for the first
three layers and Sigmoid(·) for the last output layer to
guarantee that Qk and Rk are positive semi-definite. We
train the model with batch size of 100 and learning rate
of 1e − 4. The size of the training data varies between
different experiments.

4.2 Simulation result

In this part, the training data is generated through a simulation. The simulation scenario is defined
as follows. The leading vehicle is first placed 50 meters ahead of the ego vehicle with a speed of
20 m/s. Then at the time t = 100s, the leading vehicle is switched to another one locates 40 meters
ahead of the ego but with slower speed 15m/s. Again at time t = 200s, the leading vehicle changes
to one only 20 meters ahead with a speed 18m/s. During the human driving data generation period,
the leading vehicle speed deviates from the initial speed by a normal distribution. The ego vehicle
starts with a speed of 25 m/s.

Figure 2: Simulation example result. Left: The loss history during the training phase; Right: Result
comparison between simulated data and algorithm generated command. The upper figure shows the
speed comparison and the lower figure shows the acceleration command comparison.

The history of the loss L is shown on the left hand side of Figure 2, where it can be seen that the
parameters actually converge with a rather fast rate. The performance of the proposed method is
demonstrated through another simulation, where the constant MPC controller is replaced by the
proposed algorithm in this article. The comparison of the recorded and generated ego vehicle

6

acceleration is shown on the right hand side of Figure 2. When confronting a similar scenario, the
proposed algorithm is able to generate similar behavior with respect to the recorded trajectory.

4.3 Real-world data validation

To further demonstrate the algorithm, we use several data sets extracted from Next Generation
Simulation (NGSIM) data set [US Department of Transportation, 2018]. In the NGSIM project,
detailed vehicle trajectory data is collected using camera devices at specific locations including
including southbound US 101 and Landershim Bounlevard, Los Angeles, CA, eastbound I-80 in
Emeryville, CA and Peachtree Street in Atlanta, GA. Each trajectory provides the information of
precise locations, speeds and relative distances of a vehicle with a time resolution of 0.1 second.

We extract 7 datasets from NGSIM data for the evaluation of the proposed algorithm. The training
process is similar to the simulation data case. However, here the desired distance dd is not explicitly
known from the data-set, thus another prediction model is trained simultaneously for this value during
the training process. Later to examine the algorithm performance, the sequences of the leading
vehicle speeds and locations are reconstructed through the recorded data. A simulation is run by
placing the ego vehicle at the same initial position, while it is fully controlled by the proposed control
algorithm. The scheme of the implemented algorithm is shown in on the left hand side of Figure
3. On the right hand side of Figure 3, an example of the comparison between recorded data and
simulation data is shown, where the simulated vehicle distance and speed are close to the ones in the
recorded data.

Figure 3: Real-world data result. Left: Algorithm scheme; Right: Sample result comparison

We choose the benchmark results in [Kesting and Treiber, 2008] as the baseline method, which
investigates two of the popular car-following model, Intelligent Driver Model (IDM) and Velocity
Difference Model (VDIFF). The IDM can be described mathematically as

v̇IDM (s, v,∆v) = a
[
1− (

v

v0
)4 − (

s∗(v,∆v)

s
)2
]
,

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab
,

where v is the current vehicle velocity, v0 is the desired velocity, ∆v is the velocity difference v0 and
v, s is the current distance to the preceding vehicle and s∗ is the desired distance; in this IDM model,
a, b, s0, v0, T are parameters. Meanwhile, the VDIFF model is defined as

v̇V DIFF (s, v,∆v) =
vopt(s)− v

τ
− λ∆v

vopt(s) =
v0
2

[
tanh(

s

lint
− β)− tanh(−β)

]
,

where definitions of v, s, ∆v are same as IDM model and τ , λ, lint, β are model parameters.
In [Kesting and Treiber, 2008], the models are calibrated by approximately solving the nonlinear
optimization problem through a generic algorithm [GOLDBERG, 2006]. In this algorithm, each
new generation individual are generated by recombined two scholastically selected old generation
individuals. This evolution terminates until convergence criterion reached.

7

We as well exploit the same performance indicators like [Kesting and Treiber, 2008] such as
relative error and absolute error to measure the similarity between the data as follows,

Frel(s) =

√〈
(
ssim − sdata

sdata
)2
〉

Fabs(s) =

√
〈(ssim − sdata)2〉
〈sdata〉2

,

where the symbol 〈·〉 represents the mean of a data sequence and s represents the position data. In
addition, we define absolute difference measurements as follows,

Emean(s) = 〈|ssim − sdata|〉 Evar(s) = 〈(ssim − sdata)2〉.

Table 1: Performance Evaluation

Dataset Frel(s) Fabs(s) Emean(s)[m] Evar(s)[m] Emean(v)[m/s] Evar(v)[m/s]
1 13.9% 13.1% 1.352 1.626 0.627 0.791
2 22.3% 17.3% 3.384 4.091 1.071 1.350
3 13.1% 10.6% 2.234 2.638 0.631 0.859
4 13.6% 13.5% 3.050 3.490 0.531 0.702
5 22.1% 12.2% 3.205 3.713 0.606 0.838
6 19.3% 16.3% 2.152 2.683 0.533 0.841
7 17.5% 15.6% 2.418 2.965 0.855 1.049

The performance evaluation results are shown in Table 1. Compared with the result of [Kesting and
Treiber, 2008] shown in Table 2. In the baseline result relative error and absolute error ranges
20% to 30%, our results show around 10% less. Besides, our result shows around 2 meters of position
difference and less than 1 m/s speed difference between the recorded data and simulated trajectory.

Table 2: Baseline Result

IDM VDIFF
Dataset Frel(s) Fabs(s) Frel(s) Fabs(s)

1 24.0% 20.7% 25.5% 21.4%
2 28.7% 25.6% 29.1% 21.4%
3 18.0% 11.2% 28.2% 14.5%

5 Conclusion and Discussion

In this article, we propose a framework for inverse reinforcement learning with MPC by combining
the neural network prediction with MPC control algorithm to imitate the behavior encoded inside
a recorded data. The main challenge of such approach lies in the ambiguity of labeling and model
parameters, where we approach problem by building a bijective mapping between the recorded data
and prediction model output. Optimization and dynamic model-based autonomous vehicle longi-
tudinal control algorithm nowadays suffers from the in-alignment with human intention. Whereas,
the proposed method provides a solution. We present an implementation of such control algorithm
using the proposed method. The result is compared with an existing approach and shows improved
performance by reproducing similar behavior encoded within human-driven vehicle trajectory.

Current theory development faces several drawbacks. One is that the final cost function F (·) in (1)
has to be dropped, otherwise it cannot be recovered anyway. Another one is that the hard constraints
are assumed to be inactive. The main cause of such limitations is the commonly adopted design
decision of MPC, that the optimization problem is solved recursively at each step and only the first
part of control sequence is executed. Such set-up introduces large amount of ambiguity to solve
the dual problem of optimization. Thus one of the further investigation direction is to break such
setting and assume that more than one or all the generated control signals can be observed, in order to
fully recover the cost functions and constraints. On the autonomous driving application side, feature
extraction can be potentially much enhanced to increase the similarity of driving style between a
human driver and an autonomous vehicle. One potential approach is to provide more surrounding
traffic information not limited to the leading vehicle, as well as to provide local map information
such as distances to lane boundaries and positions of the traffic intersections. The idea is that to make
an autonomous vehicle drive like human, we may need to feed comparable observation as human
receive when driving.

8

References
David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert. Constrained model

predictive control: Stability and optimality. Automatica, 36(6):789–814, 2000.

S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive control technology.
Control engineering practice, 11(7):733–764, 2003.

Sergio Vazquez, Jose Leon, Leopoldo Franquelo, Jose Rodriguez, Hector A Young, Abraham
Marquez, and Pericle Zanchetta. Model predictive control: A review of its applications in power
electronics. IEEE Industrial Electronics Magazine, 8(1):16–31, 2014.

Tom Erez, Kendall Lowrey, Yuval Tassa, Vikash Kumar, Svetoslav Kolev, and Emanuel Todorov.
An integrated system for real-time model predictive control of humanoid robots. In 2013 13th
IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages 292–299. IEEE,
2013.

David H Shim, H Jin Kim, and Shankar Sastry. Decentralized nonlinear model predictive control of
multiple flying robots. In 42nd IEEE International Conference on Decision and Control (IEEE
Cat. No. 03CH37475), volume 4, pages 3621–3626. IEEE, 2003.

F Künhe, J Gomes, and W Fetter. Mobile robot trajectory tracking using model predictive control. In
II IEEE latin-american robotics symposium, volume 51, 2005.

Roman Schmied, Harald Waschl, Rien Quirynen, Moritz Diehl, and Luigi del Re. Nonlinear mpc
for emission efficient cooperative adaptive cruise control. IFAC-PapersOnLine, 48(23):160–165,
2015.

Francesco Borrelli, Alberto Bemporad, Michael Fodor, and Davor Hrovat. An mpc/hybrid system
approach to traction control. IEEE Transactions on Control Systems Technology, 14(3):541–552,
2006.

Francesco Borrelli, Paolo Falcone, Tamas Keviczky, Jahan Asgari, and Davor Hrovat. Mpc-based
approach to active steering for autonomous vehicle systems. International Journal of Vehicle
Autonomous Systems, 3(2):265–291, 2005.

Paolo Falcone, H Eric Tseng, Francesco Borrelli, Jahan Asgari, and Davor Hrovat. Mpc-based yaw
and lateral stabilisation via active front steering and braking. Vehicle System Dynamics, 46(S1):
611–628, 2008.

Janick V Frasch, Andrew Gray, Mario Zanon, Hans Joachim Ferreau, Sebastian Sager, Francesco
Borrelli, and Moritz Diehl. An auto-generated nonlinear mpc algorithm for real-time obstacle
avoidance of ground vehicles. In 2013 European Control Conference (ECC), pages 4136–4141.
IEEE, 2013.

9

Jose Rodriguez, Marian P Kazmierkowski, Jose R Espinoza, Pericle Zanchetta, Haitham Abu-Rub,
Hector A Young, and Christian A Rojas. State of the art of finite control set model predictive
control in power electronics. IEEE Transactions on Industrial Informatics, 9(2):1003–1016, 2012.

MR Arahal, F Barrero, S Toral, M Duran, and R Gregor. Multi-phase current control using finite-state
model-predictive control. Control Engineering Practice, 17(5):579–587, 2009.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in neural
information processing systems, pages 305–313, 1989.

Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end learning of driving models from
large-scale video datasets. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2174–2182, 2017.

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, page 1. ACM, 2004.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, page 2, 2000.

Shao Zhifei and Er Meng Joo. A review of inverse reinforcement learning theory and recent advances.
In 2012 IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2012.

David Silver, J Andrew Bagnell, and Anthony Stentz. Learning from demonstration for autonomous
navigation in complex unstructured terrain. The International Journal of Robotics Research, 29
(12):1565–1592, 2010.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

US Department of Transportation. NGSIM – Next Generation Simulation. http://www.ngsim.
fhwa.dot.gov, 2018.

Arne Kesting and Martin Treiber. Calibrating car-following models by using trajectory data: Method-
ological study. Transportation Research Record, 2088(1):148–156, 2008.

DD GOLDBERG. Genetic algorithms in search, optimization, and machine learning genetic algo-
rithms in search, optimization, and machine learning, 1989. IEEJ Transactions on Electronics,
Information and Systems, 126(7):857–864, 2006.

10

http://www.ngsim.fhwa.dot.gov
http://www.ngsim.fhwa.dot.gov

	Introduction
	Related Work
	Inverse Reinforcement Learning of MPC
	Problem Formulation
	Approach
	Model Training

	Autonomous Vehicle Longitudinal Control
	Algorithm formulation
	Simulation result
	Real-world data validation

	Conclusion and Discussion

